
JavaScript 
In dieser Scriptsprache werden Anweisungen direkt , SchriƩ für SchriƩ,  ausgeführt. Hingegen wird bei C oder Java 
der Code zuerst compiliert. 
1 Zeichen, Kommentare und Begriffe 

 Steuerzeichen 
\n NewLine – Cursor wird zum Anfang der nächsten Zeile bewegt 
\r Carriage Return – Cursor geht zum Anfang der aktuellen Zeile 
\t HoƟzontal Tab – Cursor geht zur nächsten horizontalen Tab-PosiƟon 
\v VerƟval Tab – Cursor geht zur nächsten verƟkalen Tab-PosiƟon 
\o Endmarkierung eines Strings (letzte Zeichen) 
\“ Zeichen „ wird ausgegeben ( weitere Ausgaben - \´; \?; \\) 
\xhh Hexadezimalwert wird ausgegeben (hh ist der Hex-Wert) 
\nnn Oktalwert wird ausgegeben (nnn ist der Oktalwert) 
 

 Kommentare 
// eine ganze Kommentarzeile 
Var a  // ab hier beginnt der Kommenar 
/* erste Zeile  

Weitere Zeile vom Kommentar 
*/ (Ende des Kommentarbereiches) 
 

 Begriffe 
Bezeichner  Namen für Objekte in Programmen (Variablen, FunkƟonen) 
Schlüsselwörter  reservierte Wörter (while, if) 
Begrenzer  Symbole die Programmstrtukturen abgrenzen 
 Semikolon schliet eine Anweisung ab 
 Komma  trennt Argumente einer Parameterliste 
 ()  begrenzt Ausdrücke in Kontrollstrukturen 
 {}  umschließt Anweisungsblöcke 
 []  Tabellenelemente 
 =  weist einer Variablen einen Wert zu (a=1) 
 ===  Vergleich von Werten ( if a === 9) 
 

2 Daten und Datentypen 
number  eine ganze Zahl oder Fließkommazahl ( 8 oder 2.34) 
string  eine Squenz von Zeichen, die einen Text darstellen 
boolean Wahrheitswert (true oder false) 
object  ein Name-Wert-Paar; ein Datum; eine Tabelle 
undefined Variable, dessen Wert nicht definiert ist 
null  Schlüsselwort das einen null-Wert kennzeichnet 
 

3 Variablen und Kostanten 
 DeklaraƟon 

Das ist der Vorgang um eine Variable bekannt zu machen. Dazu gibt es die Schlüsselwörter var und let, die aber nicht 
unbedingt benutzt werden müssen. ( x;  var x;  let x) Der Unterschied besteht in der Sichtbarkeit. 

 DefiniƟon 
Dies ist der Vorgang um einer Variablen Speicherplatz im Programm zuzuweisen und mit einem Wert zu belegen. 
let x;    undefiniert 
str = ‚Hallo‘;   IniƟalisierung String 
Seuer =‘ \n‘;   IniƟalisierung mit Zeilenvorschub 
num = 9;   IniƟalisierung mit 9 
bool = true;   IniƟalisierung mit wahr 
obj = {„Name“ : „wert“}; IniƟaisierung mit Objekt 
 
 

* 



 GülƟgkeisbereich von Variablen 
Damit wird beschrieben, wo eine Variable innerhalb des Programms nutzbar und sichtbar ist. Es gibt globale und 
lokale Variablen. Context – nur in der entsprechenden Node verfügbar; flow – im gesamten flow verfügbar; 
 global – Flow übergreifend verfügbar 
 

 Konstanten 
Sie beginnen mit dem Schlüsselwort const. Sie benöƟgt bei der DeklaraƟon unbedingt einen Wert. 
const PI = 3.14, UD = 0.91 (z.B. Umrechnungsfaktor Dollear Euro) 
 

4 Ausdrücke und OperaƟonen 
Ein Ausdruck ist eine Verknüpfung aus Operanden (Variablen oder Rückgabewerte von FunkƟonen). Daraus erbibt 
sich dann ein neuer Wert. ( x = y * z). OperaƟonen können unär oder binär sein. 
unär nur ein Operant x = -x  (das Ergebnis wird negiert) 
binär zwei Operanten x = y * z 
Ausdrücke können in Klammern geschachtelt werde. Dabei gilt: Punkt vor Strichrechnung. x = (a - b) * (h + e);  
 

 ArithmeƟsche OperaƟonen 
let i = 3 + 4;  AddiƟon, SubtrakƟon, Division, MulƟplikaƟon (7) 
let i = 19 % 4;  Division zweier Ganzzahlen mit Ausgabe des Restes (Modulu) (3) 
let i = 4 * 4;  PotenzfunkƟon (16) 
let i = 4 ** (1/2); Quadratwurzel (2) 

 OperaƟonen 
let w = 7.88;  einfache Zuweisung (7.88)  
let h = „A“;  einfache Zuweisung („A“) 
let m = „Hallo“;  einfache Zuweisung („Hallo“) 
i++;   Inkement anstelle von i = i +1, wenn i=1 -> (2) 
r--;   Dekrement anstelle von r = r -1, wenn r=4 -> (3) 
let s = „O“ + „K“; Sring zusammensetzen mit +, („OK“) 
let m = ( 7 == 2); bedingte OperaƟon – Gleich u. Ungleich, Ergebnis: m = false (false) 
let n = ( 5 == 5);  bedingte OperaƟon - Gleich u. Ungleich, Ergebnis: n = true (true) 
let v = (7<2);  bedingte OperaƟon – Größer und Kleiner, Ergebnis: v = false (false) 
let w = (7>2);  bedingte OperaƟon – Größer und Kleiner, Ergebnis: w = true (true) 
let x = (4<5) && (2<3) Logisches UND (&&), Ergebnis des Ausdruckes ist 1, wenn alle Teilergebnisse 1 sind. (true) 
let x =(4<5) || (2<3) Logisches ODER (||), Ergenis des Ausdruckes ist 1, wenn ein Teilergebnisse 1 ist. (true) 
let z = (f==9) ? true : false;     Bedingunsoperator. Es wird eine Bedingung ausgewertet. Ist die Bedingung wahr 
   gilt der erste Ausdruck, ansonsten der Zweite. f=9 (true); f=8 (false) 

 Typenumwandlung 
let t = String(78);  Zahl in String („78“) 
let t = (78 + 1).toString(); Zahl in String („79“) 
let t = (7.8927).toFixed(2); Zahl in String mit Begrenzung nach dem Komma („7.89“) 
let x = String(false);  Boolean in String (“false”) 
let z = String(Date());  Datumsangabe in Sring (“Sat Sep 14 2024 08:44:28 GMT+0200 (MEZ)“) 
let a = Number(„81“);  String in Zahl (81) 
let a = parseFloat(“78.4”); String in Zahl (78.4) 
let a = parseInt(78.4);  String in Zahl mit Ausgabe als Ganzzahl (78) 
let s = „47“ + 11;  automaƟsche Wandlung, ist ein String enthalten, ist das Ergebnis ein String („4711“) 
let s = 4 + 5 + „7“;  automaƟsche Wandlung bei komplexer OperaƟon, String hinten („97“) 
let s = „6“ + 3 + 2;  automaƟsche Wandlung bei komplexer OperaƟon, String vorne („622“) 
 
 
 
 
 
 

 
Zum Testen wird die 
funkƟon-Node verwendet 



5 Array-Objekt 
Tabellen oder Arrays sind Strukturen von aufeinanderfolgenden Werten. Der Zugriff erfolgt über einen Index. 
 

var Bier = [„Bock“, „Pils“, „Hell”];  Erstellung mit Literal ( [ „Bock“, „Pils“, „Hell“] ) 
var Bier = new Array („Bock, “Pils”, “Hell”); Erstellung mit Array-FunkƟon ( [ „Bock“, „Pils“, „Hell“] ) 
len n = Bier.length;    Ausgabe der Länge des Arrays (3) 
var Sorte = Bier[2];    Auf Element zugreifen. Das erste Element hat den Index 0 („Hell“) 
Bier.unshiŌ(„Weizen“);    Element am Anfang hinzufügen ( [ „Weizen“, „Bock“, „Pils“, „Hell“] ) 
Bier.push(„Koelsch“);    Element am Ende hinzufügen ( [ „Bock“, „Pils“, „Hell“, „Koelsch“] ) 
Bier.shiŌ();     Element am Anfang löschen ( [ „Pils“, „Hell“] ) 
Bier.pop();     Element am Ende löschen ( [ „Bock“, „Pils“] ) 
let pos = Bier.indexOf(„Pils”);   Index eines Elementes ermiƩeln (1) 
Bier.splice(pos, 1);    Angegebenes Element löschen ( [ „Bock“, „Hell“] ) 
let kopieBier = Bier.slice();   Kopie v. Arrays anlegen, Ausgabe kopieBier ( [ „Bock“, „Pils“, „Hell“] ) 
let sortBier = Bier.sort();   Inhalt alphabeƟsch sorƟeren, sortBier  ( [ „Bock“,  „Hell“, „Pils“] ) 
 
6 Date-Objekt 
Dieses Objekt ist für alle Berechnungen mit Datum und Uhrzeit zuständig.  
 

let zeit = new Date();  Zeitobjekt ("Sat Sep 14 2024 17:14:43 GMT+0200 (MiƩeleuropäische Sommerzeit)") 
let m = zeit.getDate();  Datumsangabe aus dem Zeitopbjekt ermiƩeln, Monatstag (14) 
let d = zeit.getDay();  Datumsangabe aus dem Zeitopbjekt ermiƩeln, Wochentag (6) 
let y = zeit.getFullYear(); Datumsangabe aus dem Zeitopbjekt ermiƩeln, Wochentag (2024) 
let t = zeit.getTime();  Zeit seit dem 01.01.1970 in Sekunden (1726327575335) 
let h = zeit.getHours();  Stundenteil (18) 
let m = zeit.getMilliseconds(); Millisekunden(170)  
let o = zeit.getMonth();  Monat (8) Die Monate zählen von 0-11 
let u = zeit.getMinutes(); Minutenteil (23)  
let s = zeit.getSeconds(); Sekundenteil (34)    
let d = Date.now();  Zeit seit dem 01.01.1970 in Sekunden (1726327739289) 
 
Hinweis: 
Datumsangaben können auch aus der inject-Node übergeben werden 
Millisekunden:  $moment().millisecond() 
Sekunden:  $moment().second() 
Minuten:  $moment().minute() 
Stunde:   $moment().hour() 
Monatsdatum:  $moment().date() 
Monat als Nummere: $moment().month() + 1 
Jahr:   $moment().year() 
Wochentag als Nr.: $moment().isoWeekday() 
 

7 FunkƟonen 
FunkƟonen sind Programmierelemente, dessen Merkmal es ist, das sie Teilaufgaben des Programms ausführen. 
FunkƟonen sind damit Blöcke von Anweisungen mit einem Namen, der im Programm mehrfach aufruĩar ist. 
 

funcƟon addiƟon (a,b)   FunkƟonskopf mit FunkƟonsname und Übergabeparameter 
{ return a+b}    eigentliche FunkƟon mit return 
msg.payload = addiƟon(2,3);  Aufruf der FunkƟon mit 2 Übergbewerten für payload 
msg.topic = addiƟon(4,8);  Aufruf der FunkƟon mit 2 Übergbewerten für topic 
return msg;    Ausgabe (payload: 5 topic: 12) 
     altenaƟve Möglichket 
funcƟon addiƟon (a,b)   FunkƟonskopf mit FunkƟonsname und Übergabeparameter  
{ return a+b}    eigentliche FunkƟon mit return 
node.send({"payload": addiƟon(5,1)});  Ausgabe (6) 



8 Kontrollstrukturen 
Kontrollstrukturen besƟmmen die Reihenfolge der abzuarbeitenden Befehle. 

 If-Bedingung 
Hier wird der Inhalt einer Variablen verglichen und je nach Inhalt eine AkƟon ausgeführt. 
var a = 9;    Variable wird angelegt 
if(a == 9)    die eigentliche if-Bedingung 
{var erg = "a ist gleich 9"}  diese Anweisung wird ausgeführt, wenn if-bedingung wahr ist 
msg.payload = erg;   Inhalt wird dem payload übergeben; 
return msg;    Ausgabe: wahr -> „a ist gleich 9“; falsch -> undefined 
 

 if … else 
Dies ist eine Erweiterung der einfachen if-Anweisung. Ist das if-Ergebnis false, wird der zweite Codeblock ausgefürt. 
var a = 9;    Variable wird angelegt 
if(a == 9)    die eigentliche if-Bedingung 
{var erg = "a ist gleich 9"}  diese Anweisung wird ausgeführt, wenn if-bedingung wahr ist 
else    else-Zweig 
{ var erg = "a ist nicht gleich 9" }diese Anweisung wird ausgeführt, wenn if-bedingung falsch ist 
msg.payload = erg;   Inhalt wird dem payload übergeben; 
return msg;    Ausgabe: wahr -> „a ist gleich 9“; falsch -> „a ist nicht gleich 9“ 
 

 switch … case 
Mit switch wird eine Fallunterscheidung eingeleitet. Es wird ein zu prüfender Wert vorgegeben der in einer Liste von 
Vergleichswerten untersucht wird. Ist der Vergleich true, wird der folgende Eintrag abgearbeitet. 
let Note = 1;      Variable wird angelegt 
switch (Note) {      Kontrollstruktur (Schalter) Klammer öffnen   
case 1: node.send ({„payload“ : „sehr gut“});  Anweisungsblock (Fall)wenn Note gleich 1 
break;       die Kontrollstruktur wird abgebrochen 
case 5: node.send ({„payload“ : „mangelhaŌ“});  Anweisungsblock (Fall)wenn Note gleich 5 
}       Klammer zum Schließen der Kontrollstruktur 

 while-Schleife 
Sie wiederholt Anweisungen solang die Bedingung true liefert. 
let i = 0;                           Variable wird angelegt 
while (i<2){      Kontrolle, ob Schleife fortgeführt wird 
   node.send({ "payload": "Wert "+i });   Ausführung wenn while = true 
i++}       Erhöhung der Variable um 1 ( „Wert 0“ u. „Wert 1“) 
 

 do-while-Schleife 
Der Unterschied zu while ist, dass der Code in den geschweiŌen Klammern auf jeden Fall einmal ausgeführt wird. 
let i = 0;     Variable wird angelegt 
do {        Beginn der Schleife, inder die Ausführung mind. 1 mal erfolgt 
    node.send({ "payload": "Wert " + i });  Ausführung 
    i++}      Erhöhung der Variable um 1 
while (i < 2);     Kontrolle, ob Schleife fortgeführt wird  („Wert 0“ u. „Wert 1“) 
  

 for-Schleife 
Sie wird verwendet, wenn eine besƟmmte Anzahl an Durchläufen benöƟgt wird. 
let i;        Variable wird iniƟalisiert 
for (i=0; i <2; i++) {    Schleifenkopf mit Variable; Bedingung und Erhöhung von i um 1 
    node.send ({"payload": "Wert " + i})  Ausführung der Schleife, wenn Bedinung true („Wert 0“ u. „Wert 1“) 
} 
 
 
 
 


