JavaScript
In dieser Scriptsprache werden Anweisungen direkt , Schritt fir Schritt, ausgefiihrt. Hingegen wird bei C oder Java
der Code zuerst compiliert.

e Steuerzeichen

\n NewlLine — Cursor wird zum Anfang der nachsten Zeile bewegt

\r Carriage Return — Cursor geht zum Anfang der aktuellen Zeile

\t Hotizontal Tab — Cursor geht zur nachsten horizontalen Tab-Position
\v Vertival Tab — Cursor geht zur nachsten vertikalen Tab-Position

\o Endmarkierung eines Strings (letzte Zeichen)

\“ Zeichen ,, wird ausgegeben (weitere Ausgaben -\"; \?; \\)

\xhh Hexadezimalwert wird ausgegeben (hh ist der Hex-Wert)
\nnn Oktalwert wird ausgegeben (nnn ist der Oktalwert)

e Kommentare

// eine ganze Kommentarzeile
Var a // ab hier beginnt der Kommenar
/* erste Zeile
* Weitere Zeile vom Kommentar
*/ (Ende des Kommentarbereiches)
e Begriffe
Bezeichner Namen fiir Objekte in Programmen (Variablen, Funktionen)
Schlisselworter reservierte Worter (while, if)
Begrenzer Symbole die Programmstrtukturen abgrenzen
Semikolon schliet eine Anweisung ab
Komma trennt Argumente einer Parameterliste
() begrenzt Ausdriicke in Kontrollstrukturen
{} umschliel8t Anweisungsbldcke
[Tabellenelemente

= weist einer Variablen einen Wert zu (a=1)
=== Vergleich von Werten (if a ===9)

number eine ganze Zahl oder FlieBkommazahl (8 oder 2.34)
string eine Squenz von Zeichen, die einen Text darstellen
boolean Wahrheitswert (true oder false)

object ein Name-Wert-Paar; ein Datum; eine Tabelle
undefined Variable, dessen Wert nicht definiert ist

null Schliisselwort das einen null-Wert kennzeichnet

e Deklaration
Das ist der Vorgang um eine Variable bekannt zu machen. Dazu gibt es die Schliisselworter var und let, die aber nicht
unbedingt benutzt werden missen. (x; var x; let x) Der Unterschied besteht in der Sichtbarkeit.
e Definition
Dies ist der Vorgang um einer Variablen Speicherplatz im Programm zuzuweisen und mit einem Wert zu belegen.
let x; undefiniert

str = ,Hallo; Initialisierung String

Seuer =‘\n’; Initialisierung mit Zeilenvorschub
num=9; Initialisierung mit 9

bool = true; Initialisierung mit wahr

obj ={,Name”: ,wert“}; Initiaisierung mit Objekt

e Gliltigkeisbereich von Variablen
Damit wird beschrieben, wo eine Variable innerhalb des Programms nutzbar und sichtbar ist. Es gibt globale und
lokale Variablen. Context — nur in der entsprechenden Node verfiigbar; flow —im gesamten flow verflgbar;
global — Flow Ubergreifend verfligbar

e Konstanten
Sie beginnen mit dem Schllsselwort const. Sie bendtigt bei der Deklaration unbedingt einen Wert.
const Pl =3.14, UD = 0.91 (z.B. Umrechnungsfaktor Dollear Euro)

Ein Ausdruck ist eine Verknlipfung aus Operanden (Variablen oder Riickgabewerte von Funktionen). Daraus erbibt
sich dann ein neuer Wert. (x =y * z). Operationen kénnen unar oder binar sein.

undr nur ein Operant x = -x (das Ergebnis wird negiert)

bindr zwei Operantenx=y *z

Ausdricke kénnen in Klammern geschachtelt werde. Dabei gilt: Punkt vor Strichrechnung. x = (a- b) * (h + e);

e Arithmetische Operationen

Node ‘function' bearbeiten

leti=3+4; Addition, Subtraktion, Division, Multiplikation (7)
leti=19 % 4; Division zweier Ganzzahlen mit Ausgabe des Restes (Modulu) (3) Léschen
leti=4*4; Potenzfunktion (16) O Eigenacnanien

leti=4**(1/2); Quadratwurzel (2)
i Operationen ¥ Hame function 7
let w=7.88; einfache Zuweisung (7.88)

£ Setup Start
leth=,A% einfache Zuweisung (,,A“)
“ . . “ 1 let a = 19 % 4;
let m = ,Hallo“; einfache Zuweisung (,,Hallo“) 2 msg.payload = a;
. . . . 3 T H
i++; Inkement anstelle von i =i +1, wenn i=1 -> (2) Etury e
r--; Dekrement anstelle von r =r -1, wenn r=4 -> (3) Zum Testen wird die

lets=,0"+,K% Sring zusammensetzen mit +, (,,0K“) funktion-Node verwendet

letm=(7==2); bedingte Operation — Gleich u. Ungleich, Ergebnis: m = false (false)
letn=(5==5); bedingte Operation - Gleich u. Ungleich, Ergebnis: n = true (true)

let v = (7<2); bedingte Operation — GréRer und Kleiner, Ergebnis: v = false (false)
let w = (7>2); bedingte Operation — GréRer und Kleiner, Ergebnis: w = true (true)

let x = (4<5) && (2<3) Logisches UND (&&), Ergebnis des Ausdruckes ist 1, wenn alle Teilergebnisse 1 sind. (true)
let x =(4<5) || (2<3) Logisches ODER (| |), Ergenis des Ausdruckes ist 1, wenn ein Teilergebnisse 1 ist. (true)
let z = (f==9) ? true : false; Bedingunsoperator. Es wird eine Bedingung ausgewertet. Ist die Bedingung wahr
gilt der erste Ausdruck, ansonsten der Zweite. f=9 (true); f=8 (false)
e Typenumwandlung

let t = String(78);
let t = (78 + 1).toString();

lett =(7.8927).toFixed(2);

let x = String(false);
let z = String(Date());
let a = Number(,81);

let a = parseFloat(“78.4");

let a = parselnt(78.4);
lets=,47"+11;
lets=4+5+,7%
lets=,6“+3+2;

Zahl in String (,,78“)

Zahl in String (,,79“)

Zahl in String mit Begrenzung nach dem Komma (,,7.89“)

Boolean in String (“false”)

Datumsangabe in Sring (“Sat Sep 14 2024 08:44:28 GMT+0200 (MEZ)“)
String in Zahl (81)

String in Zahl (78.4)

String in Zahl mit Ausgabe als Ganzzahl (78)

automatische Wandlung, ist ein String enthalten, ist das Ergebnis ein String (,,4711")
automatische Wandlung bei komplexer Operation, String hinten (,,97°)
automatische Wandlung bei komplexer Operation, String vorne (,,622%)

5 Array-Objekt
Tabellen oder Arrays sind Strukturen von aufeinanderfolgenden Werten. Der Zugriff erfolgt tiber einen Index.

var Bier = [,Bock”, ,Pils“, , Hell"]; Erstellung mit Literal ([, Bock”, ,Pils“, ,Hell“])

var Bier = new Array (,,Bock, “Pils”, “Hell”); Erstellung mit Array-Funktion ([, Bock”, ,Pils“, ,Hell“])

len n = Bier.length; Ausgabe der Lange des Arrays (3)

var Sorte = Bier[2]; Auf Element zugreifen. Das erste Element hat den Index 0 (,,Hell“)
Bier.unshift(,Weizen); Element am Anfang hinzufiigen ([,Weizen”, , Bock”, ,Pils”, ,Hell“])
Bier.push(, Koelsch”); Element am Ende hinzufiigen ([,Bock”, ,Pils”, ,,Hell“, ,, Koelsch“])
Bier.shift(); Element am Anfang l6schen ([,,Pils”, ,Hell“])

Bier.pop(); Element am Ende I6schen ([,,Bock”, ,Pils“])

let pos = Bier.indexOf(,,Pils”); Index eines Elementes ermitteln (1)

Bier.splice(pos, 1); Angegebenes Element I6schen ([,,Bock”, ,Hell“])

let kopieBier = Bier.slice(); Kopie v. Arrays anlegen, Ausgabe kopieBier ([,,Bock”, ,Pils”, ,Hell“])
let sortBier = Bier.sort(); Inhalt alphabetisch sortieren, sortBier ([,Bock”, ,Hell“, ,Pils“])

6 Date-Objekt
Dieses Objekt ist fir alle Berechnungen mit Datum und Uhrzeit zustandig.

let zeit = new Date(); Zeitobjekt ("Sat Sep 14 2024 17:14:43 GMT+0200 (Mitteleuropdische Sommerzeit)")
let m = zeit.getDate(); Datumsangabe aus dem Zeitopbjekt ermitteln, Monatstag (14)

let d = zeit.getDay(); Datumsangabe aus dem Zeitopbjekt ermitteln, Wochentag (6)

let y = zeit.getFullYear(); Datumsangabe aus dem Zeitopbjekt ermitteln, Wochentag (2024)

let t = zeit.getTime(); Zeit seit dem 01.01.1970 in Sekunden (1726327575335)

let h = zeit.getHours(); Stundenteil (18)

let m = zeit.getMilliseconds(); Millisekunden(170)

let o = zeit.getMonth(); Monat (8) Die Monate zdhlen von 0-11

let u = zeit.getMinutes(); Minutenteil (23)

let s = zeit.getSeconds(); Sekundenteil (34)

let d = Date.now(); Zeit seit dem 01.01.1970 in Sekunden (1726327739289)

Hinweis:

Datumsangaben kénnen auch aus der inject-Node ibergeben werden

Millisekunden: Smoment().millisecond()

Sekunden: Smoment().second() foce nistisssten

Minuten: Smoment().minute() Loschen Abbrechien
Stunde: Smoment().hour() # Eigenschaften IENE
Monatsdatum: Smoment().date()

Monat als Nummere: $moment().month() + 1 $hame

Jahr: Smoment().year() . [— N (em—— B -
Wochentag als Nr.: Smoment().isoWeekday()

7 Funktionen
Funktionen sind Programmierelemente, dessen Merkmal es ist, das sie Teilaufgaben des Programms ausfiihren.
Funktionen sind damit Blécke von Anweisungen mit einem Namen, der im Programm mehrfach aufrufbar ist.

function addition (a,b) Funktionskopf mit Funktionsname und Ubergabeparameter
{ return a+b} eigentliche Funktion mit return
msg.payload = addition(2,3); Aufruf der Funktion mit 2 Ubergbewerten fiir payload
msg.topic = addition(4,8); Aufruf der Funktion mit 2 Ubergbewerten fiir topic
return msg; Ausgabe (payload: 5 topic: 12)

altenative Moglichket
function addition (a,b) Funktionskopf mit Funktionsname und Ubergabeparameter
{ return a+b} eigentliche Funktion mit return

node.send({"payload": addition(5,1)}); Ausgabe (6)

8 Kontrolistrukturen
Kontrollstrukturen bestimmen die Reihenfolge der abzuarbeitenden Befehle.
e If-Bedingung
Hier wird der Inhalt einer Variablen verglichen und je nach Inhalt eine Aktion ausgefiihrt.

vara=_9; Variable wird angelegt
if(a==9) die eigentliche if-Bedingung
{var erg = "aist gleich 9"} diese Anweisung wird ausgefiihrt, wenn if-bedingung wahr ist
msg.payload = erg; Inhalt wird dem payload (ibergeben;
return msg; Ausgabe: wahr -> ,a ist gleich 9“; falsch -> undefined

o if... else
Dies ist eine Erweiterung der einfachen if-Anweisung. Ist das if-Ergebnis false, wird der zweite Codeblock ausgefiirt.
vara=9; Variable wird angelegt
if(a==9) die eigentliche if-Bedingung
{var erg = "aist gleich 9"} diese Anweisung wird ausgefiihrt, wenn if-bedingung wahr ist
else else-Zweig
{ var erg = "a ist nicht gleich 9" }diese Anweisung wird ausgefiihrt, wenn if-bedingung falsch ist
msg.payload = erg; Inhalt wird dem payload (ibergeben;
return msg; Ausgabe: wahr -> ,a ist gleich 9“; falsch -> ,,a ist nicht gleich 9“

e switch ... case
Mit switch wird eine Fallunterscheidung eingeleitet. Es wird ein zu prifender Wert vorgegeben der in einer Liste von
Vergleichswerten untersucht wird. Ist der Vergleich true, wird der folgende Eintrag abgearbeitet.

let Note = 1; Variable wird angelegt

switch (Note) { Kontrollstruktur (Schalter) Klammer 6ffnen
case 1: node.send ({,payload” : ,sehr gut“}); Anweisungsblock (Fall)wenn Note gleich 1
break; die Kontrollstruktur wird abgebrochen

case 5: node.send ({, payload” : ,mangelhaft“}); Anweisungsblock (Fall)wenn Note gleich 5

} Klammer zum SchlieRen der Kontrollstruktur

e while-Schleife
Sie wiederholt Anweisungen solang die Bedingung true liefert.

leti=0; Variable wird angelegt
while (i<2){ Kontrolle, ob Schleife fortgefiihrt wird
node.send({ "payload": "Wert "+i }); Ausfihrung wenn while = true
i++} Erhéhung der Variable um 1 (,Wert 0“ u. ,Wert 1)

e do-while-Schleife
Der Unterschied zu while ist, dass der Code in den geschweiften Klammern auf jeden Fall einmal ausgefiihrt wird.

leti=0; Variable wird angelegt

do { Beginn der Schleife, inder die Ausfiihrung mind. 1 mal erfolgt
node.send({ "payload": "Wert " +i }); Ausfihrung
i++} Erhéhung der Variable um 1

while (i < 2); Kontrolle, ob Schleife fortgefiihrt wird (,Wert 0“ u. ,Wert 1)

e for-Schleife
Sie wird verwendet, wenn eine bestimmte Anzahl an Durchldufen bendtigt wird.

leti; Variable wird initialisiert
for (i=0; i <2; i++) { Schleifenkopf mit Variable; Bedingung und Erhéhung vonium 1
node.send ({"payload": "Wert " +i}) Ausfiihrung der Schleife, wenn Bedinung true (,Wert 0“ u. ,Wert 1)

}

