Message- Grundlage von Node-RED

Node-RED ist eine auf Flow-basierte Programmierung, d.h.eine strukturierte Kommunikation zwischen Datenbldcken
(Messages). Diese Nachrichten laufen von Node zu Node, wobei jede Nodes diese Daten verdandern, erdnzen oder
reagieren. Dazu braucht es einen einheitlichen Ansatz, eine ibergreifende Struktur der Nachrichten.

JSON

In Node-RED werden dazu die JavaScript-Objekte (JSON) verwendet. Das JSON-Format speichert Daten strukturiert
und textbasiert und hat Ansdtze der objektorientierten Programmierung.

Dabei gibt 2 Strukturen:

Name-Wert-Paare: geordnete Liste (Tabellen) von Werten

{"Marke": "Citroen","Baujahr": 2022} {"Farbe": ["braun", "lila", "weil"]}

Bei JSON gibt es folgende Datentypen:

Boolcher Wert: {Antwort“:true} (true / false)

Zahl: {,Temp“:23.1} (keine fihrende Null, Dezimalpunkt)
Zeichenkette: {,Name“:“Axel“} (hochgestellte Anfiihrungszeichen)
Tabelle: {"Farbe": ["braun", "lila", "weil"]} (beginnen mit [und enden mit])

Art der Darstellung:
Texteditor:

mj *Unbenannt - Editor

Datei Bearbeiten Format Ansicht Hilfe
{"Anwesend" : true, "Wert":23, "Text":"Hallo", "Farbe": ["blau", "rot", "gelb"1}|

Browser:

JSON Rohdaten Kopfzeilen

Speichern Kopieren Alle einklappen Alle ausklappen 7 JSON durchsuchen

Anwesend: true

Wert: 23
Text: "Hallo"
= Farbe:
a: "blau”
1: “mot™
2: "gelb”

Sample <+ B B v 8 x @ X

1 [["Anwesend":iru=, "Wert":23, "Text":"Hallo", "Farbe": ["blau”, "rot", "gelb"]] ¥
2 2 "Anwesend™: true,
3 "Wert": 23,
4 "Text": "Hallo",
5- "Farbe": [
6 "blau",
7 "pol™,
8 “gelb"
a1
10

Unter https://jsonformatter.org kann die Datei eingelesen werden und wird dann tbersichtlich dargestellt.
Hier konnen ebenfalls JSON-Dateien auf ihre Gultigkeit Uberprift werden.

Message bei Node-RED

topic:

28.6.2024, 13:09:23 node: debug 7

_msgid: "75c@6b54882b1126"
payload: "Hallo Welt™

Das JSON-Objekt fir eine Node-RED-Message besteht im einfachsten Fall aus
einer _msgid mit einer eindeutigen Nummer, die die Nachricht kennzeichnet.
Im Beispiel gibt es noch payload mit der Nachricht ,Hello World”. Der Eintrag
topic ist leer, denn er wurde zwar deklariert aber nicht mit Daten gefillt.

msg. payload = |+ 8 Hallo Welt x

1]
1

msg. topic i %

Eine Message kann aber noch weitere Eigenschaften haben, die in ausgewahlten Nodes (inject, change...) festgelegt

werden kénnen.

Ein Wertepaar kann z.B. die Auswertung eines Eingangs

2 |- i vom TXT 4.0 sein. Hier ist der Wert ein boolscher Wert.
Méglichkeiten waren: msg. payload = |~ % Halo Welt
flow/global: Kontextvariablen flow.

msg. topic =

string: Zeichenkette global
number: Zahl; Deimaltrennzeichen als Punkt % string
boolean: wahr oder falsch % number
JSON: ein JSON-Objekt; (Eingabe lber die drei Punkte am Ende) © boolean
buffer: es werden Daten Byte fiir Byte in den Datenpuffe gelesen. {} JsON
timestamp: Sekunden seit dem 01 Januar 1970 5 buffer
JSONNata: Abfrage und Transformationssprache fur JSON-Dateien © timestamp

Umgebungsvariable:
Beispiel flir PATH:

msg. payload

Hinweise:

konfigurierbare Variablen in Betriebssystemen

J: JsONata
- :.ﬁ"j-fci‘ $ Umgebungsvariable
msa
_msgid: "@98432cec2Bcffc”
* § PATH ==

payload: "/usr/local/sbin:/usr/local/
bin:/fusr/sbin:fusr/bin:/sbin:/bin™

weitere Message erstellen mit: *+ hinzufigen

Message l6schen:

