Neuronale Netze mit fischertechnik

fischertechnik £3

Seit kurzem gibt es einen neuen ft-Baukasten, mit dem Namen STEM Coding
Ultimate Al. Dazu gehort als Software die STEM-Suite, die kostenlos
heruntergeladen werden kann. In dieser Software sind die Bauanleitungen, die
entsprechenden Anleitungen und eine Version vom ROBO Pro Coding enthalten.
Als wichtigste Neuerung von RPC ist wohl, das nun auch mit Neuronalen Netzen
experimentiert werden kann.

Zur besseren Einordnung erst einmal einige Begriffsbestimmungen.

STEM Coding Ultimate (A}

Kiinstliche Intelligenz (KI)

Das breite Feld, das sich mit der Entwicklung von Maschinen beschiftigt, die Aufgaben ausfiihren kénnen, die
normalerweise menschliche Intelligenz erfordern, wie z.B. das Erkennen, Lernen und Probleml&sen.

Maschinelles Lernen

Ein Teilbereich der KI, der sich auf die Entwicklung von Algorithmen konzentriert, die es Computern erméglichen, aus
Daten zu lernen und Vorhersagen zu treffen.

Deep Learning

Ein Teilbereich des maschinellen Lernens, der neuronale Netzwerke mit vielen Schichten (daher , tief”) verwendet,
um komplexe Muster in groBen Datensadtzen zu modellieren.

Neuronale Netze

Sie sind das grundlegende Konzept und kdnnen auch "flache" Strukturen mit wenigen Schichten haben.

Alle Deep-Learning-Modelle sind neuronale Netze, aber nicht alle neuronale Netze sind Deep-Learning-Modelle.

Grundlagen Kiinstliches Neuronales Netzwerk

Kiinstliche neuronale Netze sind Algorithmen, die dem menschlichen Gehirn nachempfunden sind. Dieses
abstrahierte Modell miteinander verbundener kiinstlicher Neuronen erméglicht es, komplexe Aufgaben aus den
Bereichen Statistik, Informatik und Wirtschaft durch Computer zu l6sen.

Neuronale Netze erméglichen es, unterschiedliche Datenquellen wie Bilder, Tone, Texte, Tabellen oder Zeitreihen zu
interpretieren und Informationen oder Muster zu extrahieren, um diese auf unbekannte Daten anzuwenden. Auf
diese Weise kdnnen datenbasierte Vorhersagen fiir die Zukunft getroffen werden.

Eingabeschicht verborgene Schicht Ausgabeschicht Dgs Modell des Neuronalen Netzes besteht aus Knoten,
auch Neuronen genannt, die Informationen von anderen
Neuronen oder von auflen aufnehmen, modifizieren und
als Ergebnis wieder ausgeben. Dies geschieht Giber drei
verschiedene Schichten, denen jeweils ein Typ von
Neuronen zugeordnet werden kann: solche fiir den Input
(Eingabeschicht), solche fiir den Output (Ausgabeschicht)
und so genannte Hidden Neuronen (verborgene Schichten).
Die Information wird durch die Input-Neuronen
aufgenommen und durch die Output-Neuronen
ausgegeben. Die Hidden-Neuronen liegen dazwischen und
bilden innere Informationsmuster ab. Die Neuronen sind
miteinander Uber sogenannte Kanten verbunden. Je starker
die Verbindung ist, desto groRer die Einflussnahme auf das
andere Neuron.

Eingabeschicht: Die Eingangsschicht versorgt das neuronale Netz mit den notwendigen Informationen. Die Input-
Neuronen (Wert zwischen 0 und 1) verarbeiten die eingegebenen Daten und fiihren diese gewichtet an die nachste
Schicht weiter.

Verborgene Schicht: Die verborgene Schicht befindet sich zwischen der Eingabeschicht und der Ausgabeschicht.
Wahrend die Ein- und Ausgabeschicht lediglich aus einer Ebene bestehen, kdnnen beliebig viele Ebenen an Neuronen
in der verborgenen Schicht vorhanden sein. Hier werden die empfangenen Informationen erneut gewichtet und von
Neuron zu Neuron bis zur Ausgabeschicht weitergereicht.

Ausgabeschicht: Die Ausgabeschicht ist die letzte Schicht und schlielSt unmittelbar an die letzte Ebene der
verborgenen Schicht an. Die Output-Neuronen (Wert zwischen 0 und 1) beinhalten die resultierende Entscheidung,
die als Informationsfluss hervorgeht.

Welche Anwendungen gibt es?

Typischerweise sind sie pradestiniert fiir solche Bereiche, bei denen wenig systematisches Wissen vorliegt, aber eine
grolRe Menge unpraziser Eingabeinformationen (unstrukturierte Daten) verarbeitet werden missen, um ein
konkretes Ergebnis zu erhalten. Das kann zum Beispiel in der Spracherkennung, Mustererkennung,
Gesichtserkennung oder Bilderkennung der Fall sein.

Ein gutes Beispiel wird unter: https://www.youtube.com/watch?v=aircAruvnKk erklart.

Im Folgenden habe ich das Beispiel Fahrerlose Transport Fahrzeuge aus dem STEM zusammengetragen. Der
Zusammenbau des Fahrzeuges erfolgt Uiber die Bauanleitung im STEM.

Dieses Projekt hilft dir, die Funktionsweise kiinstlicher neuronaler Netze (KNN) zu verstehen.
Wahrend du Grundbegriffe eines neuronalen Netzes wiederholst, lernst du:

e wie ein neuronales Netz aufgebaut ist,

e was eine Klassifikation ist,

e und wie sich das von einer Mehrfach-Klassifikation (Multi-Label) unterscheidet.

Ob in der Automobilindustrie, in Lagerhallen oder in der
Lebensmittelproduktion — die FTF (Fahrerlose

Transport Fahrzeuge) helfen dabei, Arbeitsabldufe zu
verbessern, Transportzeiten zu verkiirzen und die Arbeit
fiir Menschen sicherer und einfacher zu machen. Die
Fahrzeuge fahren Wege automatisch ab, weichen
Hindernissen aus und kdnnen rund um die Uhr eingesetzt
werden.

Inhalt:

Steuerung eines FTF — Steuerung mit einem neuronalen Netz 2
Konfiguration des neuronalen Netzwerkes fiir das FTF 5
Abstandssensor dem neuronalen Netz hinzufligen 8

Fazit 10

https://www.youtube.com/watch?v=aircAruvnKk

Steuerung eines FTF — Steuerung mit einem neuronalen Netz

*+ Ultrasonic Distance Sensor

Motor M2 rechts

I3
§ _ Fahrtrichtung
i
&

Motor M1

[zt
(7]
=
=
o]
=
=
(1]
=
=

11 rechts

12 links

links

Bisher hast du den Linienfolger mit ausfiihrlicher
Programmierung realisiert.

=

Mit kiinstlicher Intelligenz in einem neuronalen
Netzwerk verringert sich der Programmieraufwand
und die Prazision kann gesteigert werden!

Mit den beiden IR-Sensoren (IR Track Sensor) des Spursensors
erkennst du, ob das Fahrzeug sich auf der schwarzen Linie (dem
gewlinschten Fahrweg) befindet. Mit dem Abstandssensor
(Ultrasonic Distance Sensor) erkennst du Hindernisse und den
jeweiligen Abstand zum Hindernis.

test

is IR track sensor state RN 0

if true
if false
test

if true
If false

set motor RESEYEYIIEN EZS7RN speed
set motor IR speed

elself =

do set motor RETEYNYTIEN E=TRN speed

set motor [0S speed

elseif =

set motor EESMVNYIIEN TR speed
set motor TR speed

set motor EESEYEVIIEN TR speed
set motor RESMYNYVIN VRN speed

[Sinne

Gehirn

Muskeln]

Sensordaten

IR-Sensor links

Sensoren

|IR-Sensor rechts

>

Neuronales

Geschwindigkeit

Motor links

Motoren

Motor rechts

Netz

\

[Eingabeschicht

3

Verborgene)
Schicht(en) Ausgabeschicht

Bezeichnungen in kinstlichen
neuronalen Netzen J

Neuronale Netze ahmen das Gehirn nach, indem sie wie Nervenzellen (Neuronen) Sinnesdaten empfangen, diese
Uber viele Verbindungen weiterleiten und verarbeiten und daraus passende Reaktionen erzeugen — so wie unser
Gehirn z. B. Muskelbewegungen oder Sprache steuert.

Uberlege, wie du mit einer Fernbedienung das Fahrzeug steuern wiirdest!

= fischertechnike= ROBO Pro Coding Stelle vor der Einrichtung des neuronalen Netzes sicher,

R S A = o % | dass ,Learning Level 3“ ausgewihlt ist. Neuronale
v Untitled # - ! . . .
90 = Netze erzeugst du im Funktionsbereich ,Neural
I3 Conrller Confraton MMM | (TN Network (NN)“.

a Project Configuration
Actuators

ML Main Program
Sensors

Klicke auf ,Add neural network configuration”. Danach erscheint die Konfigurationsoberflache fir das neuronale
Netz.

= fischertechnikea ROBO Pra Coding I Hier wird ein neuronales Netz (NN) angezeigt,
PoctXT40 B O O comlucotumon X % Manfogim X 8 Mol ek Crlgumin X = = = das nuraus einem Eingabeneuron und einem
T taver)| o Ausgabeneuron besteht. Mithilfe der
Uca-u-i«w--r: T IR et =T T Werkzeuge auf der rechten Seite kannst du nun
S i oo commgrate: — 05+ selbst Einstellungen vornehmen und das

NE Hain Program

neuronale Netz entsprechend deiner

Meurans: — 1 +
Aufgabenstellung aufbauen.
+ Im rot markierten Bereich findest Du die
° Einstellungen fiir das gewiinschte neuronale
Meurons: — 1 =+

Netz.

Training Controls
| Epochs: Gibt an, wie oft das gesamte Trainingsdatenset vom neuronalen Netz

Epochs: — 100 | durchlaufen und gelernt wird. Mehr Epochen bedeuten oft bessere Anpassung,
LeamingRate: — 05 | + aber a.uc.h Iangere Trainingszeit — und zu viele kdnnen zu Uberanpassung
(Overfitting) fihren.

Learning Rate: Bestimmt, wie stark die Gewichte des Netzes bei jedem
Lernschritt angepasst werden. GroRe Werte = schnelleres Lernen, aber Gefahr

Neurons : — 1 - .
des ,Uberschieflens” (man verpasst den optimalen Wert). Kleine Werte =
langsamer, aber stabiler.

+ 0 Inputs: Anzahl der Eingabeneuronen. Jedes Neuron in dieser Schicht steht fir
eine Eingabevariable (z. B. Temperatur, Luftfeuchtigkeit, Messwert). Die Anzahl
' muss zur Struktur der Eingangsdaten passen.

Hidden Layers: Hier kdnnen verborgene Schichten hinzugefiigt werden, also die

Neurons: — 1 + I

Verarbeitungsebenen zwischen Eingabe- und Ausgabeschicht. Jede Schicht
I kann eine beliebige Anzahl an Neuronen haben, um komplexere Muster zu
i erkennen. Mehr Schichten und Neuronen = hohere Modellkapazitat, aber auch
. mehr Rechenaufwand und Risiko von Uberanpassung.
QO ciassification Outputs: Anzahl der Ausgabeneuronen. Bei einer Regression meist 1 Neuron je
Aktor (gibt eine Zahl zuriick). Bei Klassifikation = Anzahl der moéglichen Klassen
(z. B. 3 Neuronen fur ,rot”, ,gelb”, ,griin®).
1 Problem Type
Regression: Vorhersage von kontinuierlichen Werten (z. B. Temperatur,
Geschwindigkeit, Entfernung).
Classification: Vorhersage von Klassen, bei denen jedes Beispiel genau einer Klasse zugordnet wird (z. B. FuRganger
oder Rollstuhlfahrer).
Multi-label Classification: Einem Beispiel konnen mehrere Klassen gleichzeitig zugeordnet werden (z. B. ein Bild kann
,Ball“und ,rot” sein).
Extras
Use Weighted Loss aktiviert gewichtete Fehlerbewertung. Das ist niitzlich, wenn manche Klassen oder Werte im
Trainingsdatensatz seltener vorkommen und man verhindern will, dass das Netz diese vernachlassigt. Beispiel: Bei
einer Klassifikation mit 90 % Klasse A und 10 % Klasse B wiirde ein Standardnetz Klasse A bevorzugen — durch
Gewichtung kann man beide Klassen gleich wichtig machen.

@ Regression

(O Multi-label Classification

Use Weighted Loss : []

Konfiguration des neuronalen Netzwerkes fiir das FTF

Tralning: START RESET Settings Code
MNetwork Graph Error Graph Training Data Training
@ Inputs Epochs: — 100
P Lo _ Anzahl der Eingangsneuronen: Anzahl der
earning Rate : — 0,5

Sensoren, deren Werte verarbeitet werden
sollen (hier: IR-Sensor rechts und links).

e F ° Neurons: — 2 +
Tl
-

Hidden Layers

Zur Verarbeitung wird hier 1 Hidden Layer

+ (2] . .
mit 2 Neuronen eingesetzt.

Neurons: — 2 -+

Outputs Anzahl der Ausgangsneuronen: Anzahl der

Newons: — 2+ Aktoren (Motoren)

P AN

=
° M | e (®) Regression

O casaicn Problemtyp: Regression, jeder Motor soll

einen Wert erhalten.

O Muttidabel ©

Stelle die richtigen Parameter ars Im Regressionsverfahren sagt das NN
des NN fir das FTF ein. Use Weighted Loss : [] bestimmte Zahlenwerte voraus,
hier: die Motorgeschwindigkeiten.

Was soll bei verschiedenen Sensorzustanden an den Ausgdngen passieren?

ADD ROW IMPORT EXPORT

Input1 Input2 Output1 Output2

Voll auf Linie:
0 0 1 1 X 4| Motoren fahren Héchstgeschwindigkeit
0 1 0,9 0,2 X ¥~ Links auf Linie, rechts neben Linie:

Linkskurve: linker Motor langsam, rechter Motor schnell

1 0 02 0,9 X
1 1 0 0 X Links neben Linie, rechts auf Linie:

Rechtskurve: linker Motor schnell, rechter Motor langsam

IR-Sensor IR-Sensor Motor Motor : - =
links rechts rechts links Beide Sensoren nicht auf Linie:

Die Motoren stoppen.

Fir das Programm fiir die Linienfolge musst du zundchst zwei Variablen definieren: @

Die 2 Input-Werte werden nun in in der Reihenfolge des angelegten neuronalen Netzes in eine Liste geschrieben.

e P Tinputs - 1) + - create list with get IR track sensor state
repeat forever get IR track sensor Ly THFEY state

Der Block ,,execute NN with inputs” erzeugt ebenfalls eine Liste mit Output 1 an erster Stelle und Output 2 an
zweiter Stelle. Hier werden dann die vom neuronalen Netz ermittelten Zahlenwerte zwischen 0 und 1 ausgegeben.

ST

Mit diesen beiden Listenwerten werden die aktuell notwendigen Geschwindigkeiten eingestellt, indem sie mit der
Maximalgeschwindigkeit (hier 450) multipliziert werden.

+
set motor RESMYNTIES [TTRd speed 11588 outputs ~ f get - | # - 8 1] 2

: i
set motor [EAI PR (VR4 speed TS Cutputs + | 2] > - B 450

Geduld: das Programm braucht ca. 10s nach dem Hochladen bis zum Start.

Losungsmoglichkeit Start
dauerhaft wiederholen

mache setze [[[TCEM auf & + — erzeuge Liste mit C hole IR-Spursensor EELAT TN Status
C hole IR-Spursensor [E3A NP Status Y

setze [T M auf * execute NN withinputs . [T Zufdllige

+ setze Motor EEAAVAIIA [TTEXA Geschwindigheit o JIussany i o el e = Gewlchte ‘

+ setze Motor REAETNTFES [TTTEA Geschwindigkeit in der Liste nimm - W das - BL2 0= 0 L% M 450} l

bglétclll'll:::en I

Es kann durchaus sein, dass das Programm schon richtig funktioniert hat.
In der Regel klappt das aber nicht. ¢
Das neuronale Netz versucht, die vorgegebenen Zeilen der Trainingsdaten exakt zu enter
erfillen. Dabei kann es z. B. ,ibers Ziel hinausschieRen”! Wir missen es auf jeden Fall
richtig trainieren — aber wie? Die Sensoren schicken Rohwerte ins Gehirn des Roboters. Feier
Jede Verbindung hat im Programm eine ,Stellschraube”, die bestimmt, wie stark das zurickverfolgen
urspriingliche Signal bei einem bestimmten ,Denkneuron” ankommt. Beim Training dreht i
man in jeder Runde (Epoche) an diesen Stellschrauben, bis die Motoren im richtigen
Moment genau das tun, was sie sollen. Das neuronale Netz schaut also, wie grof sein Gewichte . _N < 1000
Fehler war, geht riickwarts durch alle Verbindungen und dreht an den Stellschrauben der erteres
Gewichte, damit es beim nachsten Mal besser liegt. Um das komplexe biologische -

neuronale Netz im Programm zu simulieren, hilft uns die Mathematik.

Gewlichte
speichern

Jedes Eingangsneuron schickt nach dem Training also seinen eigenen gewichteten Wert an
die Neuronen der verborgenen Schicht. Hier werden die Eingangssignale addiert und wiederum gewichtet. Diese
,Denkneuronen” senden Signale an die Ausgangsneuronen, die diese Signale ebenfalls addieren und gewichten.
Summe = (Eingabe_1¢ Gewicht_1) + (Eingabe_2 ® Gewicht_2) + Bias
Der Bias ist im Prinzip ein kleiner Trick, damit ein Neuron flexibler reagieren kann. Bias verschiebt den Startpunkt, ab
wann ein Neuron aktiv wird, er stellt quasi die Grundaktivitat eines Neurons ein, auch wenn kein Sensorwert anliegt.
Mit einer speziellen mathematischen , Aktivierungsfunktion” werden die gewichteten Daten abschlieRend noch in
eine dynamische, nicht-lineare Funktion umgerechnet. Das kommt der Biologie sehr nahe!
So entsteht eine Tabelle, die im Programm abgelegt und bei ,,execute NN with inputs” zur Vorhersage der bendtigten
Motorwerte verwendet wird.
ACHTUNG Fehlerquellen:
Die Genauigkeit des Trainings hangt von mehreren Faktoren ab:

1. Anzahl der Trainingsdurchldufe (Epochen): je mehr, umso genauer, aber zeitintensiv

2. Einstellung der Lernrate (learning rate)

3. Anzahl der vorgegebenen Situationen in der Trainingstabelle

Warum sollen die Eingaben fiir das neuronale Netz zwischen 0 und 1 liegen?

Warum Neuronale Netze besser mit Werten 0-1 lernen Neuronale Netze lernen besser, wenn die Eingaben (z. B.
e R /-———* Abstandswerte-Werte) zwischen 0 und 1 liegen:

X _skalierte Eingaben (0-1) GroRe Zahlen (z.B. 100) fihren dazu, dass Aktivierungsfunktionen
wie die Sigmoid-Funktion in Sattigungsbereiche geraten - dort
reagiert das Netz kaum noch.

Kleine, normierte Werte (0—1) liegen im empfindlichen Bereich der
Funktion. - Das Netz reagiert starker und passt seine Gewichte
0.2 besser an.

0.8

Sigmoid(x)
e
o

o
rS

0.0

-100 -7.5 =50 =25 0.0 25 5.0 75 10.0
Eingabewert

Von der Biologie lernen!
Im menschlichen Nervensystem ist die Lage dhnlich, nur eben in der ,Bio-Version“, mit Nervenzellen und chemischen
Reaktionen, statt Silizium und Software.

e Sinneszellen (Sensoren): z. B. Fotorezeptoren in der Netzhaut, Haarzellen im Ohr, Tastzellen in der Haut. Sie
nehmen physikalische Reize auf (Licht, Schall, Druck) und wandeln sie in elektrische Signale um.

e Eingangsebene (vergleichbar mit Eingangsneuronen): Die Sinneszellen sind tiber Nervenbahnen mit anderen
Nervenzellen verbunden, die diese Signale an die ndachsten Schaltstellen weiterleiten. Dabei kann schon eine
erste ,Vorverarbeitung” stattfinden (z. B. Kontrastverstarkung im Auge).

e ,Verborgene Schichten” im Gehirn (Hidden Layer): Mehrere Schichten von Neuronen verarbeiten, gewichten
und kombinieren die Signale, bevor eine Entscheidung oder Reaktion ausgel6st wird.

e Ausgangsebene (Motorneuronen): Losen dann Muskelbewegungen oder andere Reaktionen aus.

Der groBe Unterschied:
Im Gehirn wird das , Training” nicht durch Rechenoperationen gesteuert, sondern durch komplexe biochemische
Prozesse — z. B. Synapsenverstarkung oder -abschwiachung (Hebb’sches Lernen) basierend auf Erfahrung.

Jetzt wird gelernt
Probiere zunachst die vorgegebenen

O Controller Configuration X & Main Program X & Neural Network Configuration X
Grundeinstellungen aus:
Training Ismm I I RESET I
Epochsen: 100
I Learning Rate: 0.5
Epochs: — 100 + .
_ Klicke auf Start.
Leamning Rate: — 05 <

Funktioniert das Programm nun besser? Bei jedem Trainingsdurchlauf werden andere Gewichte und Bias berechnet.
Klick auf Reset und erneut auf Start. Teste das Programm und beobachte, ob es im Ablauf Unterschiede gibt.
Mogliche Ergebnisse:

Training 1 Training 2

MNetwork Graph Error Graph Training Data MNetwork Graph Error Grapt Training

(] = 40 Epom B0 T

Console Metwork Weights
Console Metwark Weights
Input to Hidden Layer 1:

Input to Hidden Layer 1:
Meuron 1 - Weights: [-1,571,-0,908] Bias: 1,317

Neuron 1 - Weights: [1,919,-0,592] Bias: -0.475

Neuron 2 - Weights: [0,922,-158] Bias: -0,185 Neuwron 2 - Weights: [-0,471,-1,709] Bias: 1,123
Hidden Layer 1 to Qutput: Hidden Layer 1 to Output;

Meuron 1 - Weights: [2,102,-0,741] Bias: -0,267 MNeuron 1 - Weights: [-1,82,0,943] Bias: 1,024

Meuron 2 - Weights: [1,313,1,726) Bias: 0,837 Neuron 2 - Weights: [0,037, 2,143] Bias: -0,585

Wird es noch besser? Zahl der Trainingsepochen vergréBern

Flihre nun weitere Versuche mit gednderten Einstellungen (Epochen, Lernrate) durch. Denke vor dem Start des
Trainings daran, den Reset-Button zu betatigen. Nach jedem Training tGbertragst du das Programm in den TXT 4.0
Controller und machst eine Testfahrt mit dem FTF.

G e L & el Matvork Conbguestian % 0 Training 1 Training 2 Training 3
Training: ~ START RESET Settings ode Epochs: 500 | EpOChSI 500 \ EpOChS? 1000
AT Eor Graph ST Learning Rate: 0.5 [Learning Rate: 0.1 [Learning Rate: 0.1
—_— Epochs: — 1000 +

LeaninaRate: — 01 +

Welche Unterschiede bemerkst du?
Ist evtl. eine Version ,Ubertrainiert“?

Abstandssensor dem neuronalen Netz hinzufligen

: \ Beim Einsatz eines FTFs kann es vorkommen, dass sich Gegenstande
oder langsamere FTFs im jeweiligen Block vor dem schnelleren FTF
befinden. Damit es in diesem Fall zu keiner Kollision kommt, soll das
FTF nun mit einer Bremsfunktion ausgestattet werden. Zur Simulation
wird das FTF und ein Gegenstand (etwa in der Hohe des FTF) auf den
Plan gesetzt. Ziel ist es, das Fahrzeug so zu programmieren, dass es
das Hindernis erkennt und stoppt. Zur Simulation eines langsameren
Fahrzeugs kannst du das Hindernis vor dem FTF bewegen. Das FTF soll
abbremsen, bis es die gleiche Geschwindigkeit wie dein bewegtes
Hindernis hat.

Der Abstandssensor ist bereits an den Eingang I3 angeschlossen und ist vorne montiert.
Zunachst muss du in deinem bisherigen Programm die Variable ,,us_sensor” erstellen.
Zu Beginn der ,repeat forever“-Schleife soll der Messwert des Abstandssensors in die Variable ,,us_sensor”
geschrieben werden. Die Messwerte des Abstandssensors sind cm-Angaben. Wir wollen nur den Wertebereich
zwischen 0 und 100 cm betrachten. Jeder groRere Wert wird grundsatzlich auf 100 cm gesetzt. Das Lernen des
neuronalen Netzes funktioniert aber mit Werten zwischen 0 und 1 besser. Deshalb miissen die Werte in der Variablen
»us_sensor” durch 100 geteilt werden, sodass sie nun alle zwischen 0 und 1 liegen.

do
else

us_sensor -

£714 us_sensor ~ §) * get ultrasonic sensor distance

Nun musst du die Listenvariable ,inputs” noch um den Eintrag des ,us_sensor“-Wertes erweitern.

get IR track sensor state
get IR track sensor .y |WFEQ state

Schon ist das erweiterte Programm fertig. Nun musst du nur noch das neuronale Netz entsprechend erweitern und
dann erneut trainieren.

+ = create list with -

dauerhaft wiederholen
mache setze [N G ok auf * hole Ultraschallsensor § RN NEES Abstand

* falis > - 9100
mache sotze [T auf [

s e sensor - TR ~sensor— -~ 00

P T TXT_M_M3 = Geschwindigkeit € EjF3
s;tzem“f + - erzeuge Liste mit hole IR-Spursensor {7 N{ES Status
hole IR-Spursensor [{ " EFEY Status

sotze [ITTTCRA auf execute NNwithinputs _ [[TT°ES
+ setze Motor REARTNTIIES TSRS Geschwindigkeit inderListe ETTCNI CGDXE [5X3 © . B Ix - 450

+ - setze Motor [FUMYNTVER (VSN Geschwindigheit o o i porerrreey ey Frges 1|, Eloment £X2 50

Zunachst musst du ein drittes Eingangsneuron hinzufiigen.

iraph Training Data
Epochs: — 1000
LearningRate: — 0,1 +
oot Spalte erweitert.
o Neurons: — 3 =+
° ADD ROW IMPORT
° - I t1 | t2 | | t3
Neurons: — 2 4+ x npu npu npu
0 0 0
o
° Neurons: — 2 +

Dadurch wir auch die Tabelle ,Training Data” um eine

EXPORT

Qutput 1 Output 2

0 0 X

Beachte, dass die hohe Motorgeschwindigkeit hier auf 0.7 (statt wie bisher 0.9) gesetzt werden sollte.

Voll auf der Linie, kein Hindernis voraus:
Die Motoren fahren Hochstgeschwindigkeit.

Links auf, rechts neben der Linie, kein Hindernis voraus.
Linkskurve: Linker Motor dreht langsam, rechter schnell.

Links neben, rechts auf der Linie, kein Hindernis voraus.

Rechtskurve: Linker Motor dreht schnell, rechter langsam.

Nicht auf der Linie, kein Hindernis voraus:
Die Motoren fahren Hichstgeschwindigkeit.

Voll auf der Linie, Abstand Hindernis <= 0.5:
Die Motoren stoppen.

ADD ROW IMPORT EXPORT
Input1 Input2 Input3 Output1 Output2 /
0 0 1 1 1 X
0 1 1 0,7 02 X |
1 0 1 0,2 0,7 X~
1 1 1 1 1 X
1 1 0,5 0 0 X \
0 0 0 0 0 X \
IR-Sensor IR-Sensor Ultraschall Motor Motor \
links rechts Sensor rechts links
Training: START RESET Settings Code
Network Graph Error Graph Training Data n
Epochs: — 1000
” Learning Rate: — 0,1

Hindernis unmittelbar voraus:
Die Motoren stoppen.

Nun musst du das neuronale Netz trainieren. Fir dieses
etwas komplexere Problem sind fiir die Training Controls die

—

+ Rate0.1.

folgenden Einstellungen sinnvoll: 1000 Epochen und Learning

Flihre mehrere Trainings mit den gleichen Parametern durch. Teste nach jedem Training das Programm und
beobachte die Reaktionen des FTFs.

War das

Testen der Programme erfolgreich?

Folgende Punkte helfen dir bei der Fehlersuche. Uberpriife die Vorschlige ggf. mit deiner Anlage.

Stimmt der Programmablauf?
Stimmen die die Variablennamen?

Sind alle Funktionen und Variablen korrekt definiert?

Ist die Tabelle ,Training Data“ korrekt?

Hast du mehrere Trainingsdurchldufe durchgefiihrt und getestet?
Wenn das FTF wie gewlinscht fahrt, klicke auf weiter.

Fazit

Vor und Nachteile Neuronaler Netze

Vielleicht denkst du nach diesen ersten Ubungen, dass neuronale Netze auf den ersten Blick keinen grofRen Vorteil
bringen. Schliellich hast du ja die Beispiele selbst programmiert und die Programme fiir diese Modelle waren auch
manuell leicht umsetzbar. Aber der entscheidende Punkt, den du dir merken solltest, ist folgender:

Du hast dem neuronalen Netz nur wenige Beispiele gegeben, um zu lernen.

Doch wenn das Netz ausgefiihrt wird, erhalt es unzahlige verschiedene Eingabewerte — nicht nur 0,2, 0,4 oder

0,6, sondern auch Werte wie 0,3, 0,444444...,0,1 usw.

Dennoch entscheidet das Netz richtig, welche LEDs eingeschaltet werden sollen.

Die eigentliche Starke der neuronalen Netze
Diese Fahigkeit, auch Zwischenwerte richtig zu interpretieren, ist das, was neuronale Netze so machtig macht.
Dasselbe Prinzip findet man in komplexeren Systemen, zum Beispiel bei:

e Sprachmodellen wie ChatGPT,

e Bilderkennungssystemen,

e oder bei der autonomen Fahrzeugsteuerung.
Neuronale Netze lernen aus Beispielen —und je besser und sauberer diese Beispiele sind, desto praziser und
verlasslicher arbeiten sie.

Bedeutung der Trainingsdaten

Es ist duRerst wichtig, die Trainingsdaten sorgfaltig zu kontrollieren. Wenn man ein Sprachmodell mit allen Inhalten
des Internets trainieren wiirde, ohne Filterung, kdnnte das Modell Unsinn oder geféhrliche Aussagen wiedergeben,
die es aus Foren oder pseudowissenschaftlichen Quellen gelernt hat.

Selbst wenn man filtert, kdnnen sich verzerrte Informationen (Bias) einschleichen.

Verantwortung und kritisches Denken
So intelligent und beeindruckend moderne KI-Systeme auch erscheinen, sie sind immer nur so gut wie die Daten, mit
denen sie trainiert wurden. Deshalb missen die Ergebnisse solcher Systeme kritisch zu hinterfragt werden.
Die Beispiele sind alles. Wenn die Trainingsbeispiele nicht korrekt oder ausgewogen sind, kann auch das Ergebnis
fehlerhaft oder gefahrlich sein.
Vorteile:
e Kann Zwischenwerte und Muster erkennen
e Lasst sich auf viele komplexe Systeme anwenden
e Lernt aus Beispielen, ohne exakte Regeln zu bendtigen
e Kann sich an neue Daten anpassen
Nachteile:
e Abhangig von der Qualitat der Trainingsdaten
e Risiko von Vorurteilen (Bias) und Fehlinterpretationen
e Fehlendes Verstandnis fiir den Inhalt — lernt nur Korrelationen
e Training erfordert Kontrolle und Verantwortung

Wie sicher sind Entscheidungen des Neuronalen Netzes
In den Ubungen zur Klassifikation und Mehrfach-Klassifikation hast du gesehen, dass das neuronale Netz einen Wert
zwischen 0 und 1 fiir jede Neurone in der Ausgabeschicht liefert.
Dieser Wert zeigt an, wie sicher sich das Netz ist, dass eine bestimmte LED leuchten soll.
Verstehen der Sicherheitswerte
e Ein Wert von 1,0 bedeutet:
- Das Netz ist 100 % sicher, dass dieser Fall zutrifft.
e Ein Wert von 0,5 bedeutet:
- Das Netz ist unsicher, ob dieser Fall korrekt ist.
e Je naher der Wert an 1 liegt, desto zuversichtlicher ist das neuronale Netz in seiner Entscheidung.
Wenn die Werte mit 100 multiplizieren werden, kdnnen sie als Prozentwerte der Sicherheit dargestellt werden.

